Akai GX-370D, Circa 1973 ON THIS PAGE:

Wire Recorders &
Tape Recorders


CD's: Most Durable Brands


mp3 Flash Players


Some info from:

Sound recording

Methods and media for sound recording are varied and have undergone significant changes between the first time sound was actually recorded for later playback until now.


Mechanical Recording

The first devices for recording sound were mechanical in nature.

In 1796 a Swiss watchmaker named Antoine Favre described his idea for what we now call the cylinder musical box. This can be considered an early method of recording a melody, although it does not record an arbitrary sound and does not record automatically. "Playback" however is automatic.

The Player piano was a device that could playback a piano performance which had earlier been mechanically recorded onto a piano roll.

The first recording of sound waves

Leon Scott invented the 'phonoautograph', the first device to record arbitrary sound in 1857. It used a membrane (which vibrated in response to sound) attched to a pen, which traced a line roughly corresponding to the sound wave form on to a moving roll of paper. Although able to record sound, the phonoautograph was unable to play back the recording; it was of little use other than as a laboratory curiousity.

The Phonograph and the Gramophone

The phonograph built expanding on the principles of the phonoautograph. Invented by Thomas Edison in 1877, the phonograph was a device with a cylinder covered with a soft material such as tinfoil, lead, or wax on which a stylus drew grooves. The depth of the grooves made by the stylus corresponded to change in air pressure created by the original sound. The recording could be played back by tracing a needle through the groove and amplifying the resulting vibrations by a metal 'horn' attached to the needle. A disadvantage of the early phonographs was the difficulty of reproducing the phonograph cylinders in mass production.

This changed with the advent of the gramophone (phonograph in American English), which was patented by Emile Berliner in 1887. The gramophone imprinted grooves on a disk record. Instead of recording by varying the depth of the groove (vertically), as with the phonograph, the vibration of the recording stylus was across the width of the track ( horizontally). The depth of the groove remained constant.

In audio fidelity terms the disc record was inherently neither better than or worse than than the phonograph cylinder, but the disc records were easier and cheaper to mass produce. Reproduction of these disks was relatively simple by pressing a master image on a plate of shellac. The speed at which the disks were spun varied between someting like 60 to 80 rpms (revolutions per minute). Early clock-spring turntables had a sliding speed adjustment to accomodate the speed of different disks. As electric motors began replacing the spring-wound platters of early phonographs, the speed was eventually standardized at 78 rpm.

Later innovations allowed lower rotations: In the 1950's, 45 and 33 1/3 rpm disks became available, and the material was changed to vinyl. "Microgroove" reduced the groove to about one-third of the 78's width; and stereo disks became standardized in the late 1950's. The two competing methods of stereo disk recording included one that divided the disk surface into two groove packs, one for each channel. This awkward system gave way to recording both channels within one groove, the two walls of the groove each carrying one of the 2 channels.

Both phonograph cylinders and gramophone discs were played on mechanical devices most commonly hand wound with a clockwork motor. The sound was amplified by a cone that was attached to the diaphragm. The disc record largely supplanted the competing cylinder record by the late 1910s.

The advent of electrical recording in 1924, and electrical playback in 1925 drastically improved the quality of the recording process of disc records.

Magnetic Recording


Magnetic recording was demonstrated in principle as early as 1898 by Valdemar Poulsen in his telegraphone. Magnetic wire recording, and its successor, magnetic tape recording, involve the use of a magnetizable medium which moves with a constant speed past a recording head. An electrical signal, corresponding to the sound being recorded, is fed to the recording head, inducing a pattern of magnetization similar to the signal. A playback head can then pick up the changes in magnetic field from the tape and convert it into an electrical signal.

With the addition of electronic amplification developed by Curt Stille in the 1920s, the telegraphone evolved into wire recorders which were popular for voice recording and dictation during the 1940s and into the 1950s. The reproduction quality of wire recorders was low, however — significantly lower than that achievable with phonograph disk recording technology. Wire recorders could not prevent the wire from undergoing axial twisting, and hence could not insure that the wire was oriented the same way during recording and playback. When oriented the wrong way, high frequencies were reduced and the sound was muffled. The hysteresis of the steel material resulted in nonlinear transfer characteristics, manifesting as distortion. (Hysteresis: a property of systems that do not instantly follow the forces applied to them, but react slowly.) There were other practical difficulties, such as the tendency of the wire to become tangled or snarled. Splicing could be performed by knotting together the cut wire ends, but the results were not very satisfactory.


Akai GX-370D, Circa 1973 Early tape recorders were first developed in Germany. On Christmas day 1932 the British Broadcasting Corporation first used a tape recorder for their broadcasts.

Magnetic tape recording as we know it today was developed in Germany during the late 1930s by the C. Lorenz company. In 1938, S. J. Begun left Germany and joined Brush Development Company in the United States, where work continued but attracted little attention. During the war, the Allies became aware of radio broadcasts that seemed to be transcriptions, but whose audio quality was indistinguishable from that of a live broadcast. After the war, the Allied capture of a number of German Magnetophon recorders from Radio Luxembourg aroused great interest. These recorders incorporated all of the key technological features of analog magnetic recording, particular the use of high-frequency "bias."

Development of magnetic tape recorders in the late 1940s and early 1950s is associated with the Brush Development Corporation and its licensee, Ampex; the equally important development of magnetic tape media itself was led by Minnesota Mining and Manufacturing corporation (now known as 3M).

The use of magnetic tape recorders in broadcasting got a significant boost from Bing Crosby, who refused to perform on radio unless his shows could be prerecorded.

7½" reel of ¼" recording tape

Typical of audiophile/consumer/educational use 1950s-60s. The typical professional tape recorder of the early 1950s used ¼" wide tape on 10½" reels, with a capacity of 2400 feet (731.5 metres). Typical speeds were initially 15 inches per second (ips) yielding 30 minutes' recording time on a 2400' reel. 30 ips was used for the highest quality work.

Standard tape speeds varied by factors of two. 30 and 15 ips were used for professional audio recording; 7½ ips for home audiophile prerecorded tapes; 7½ and 3¾ ips for audiophile and consumer recordings (typically on 7" reels). 1 7/8 ips and occasionally even 15/16 ips were used for voice, dictation, and applications where very long recording times were needed, such as logging police and fire department calls.

The key electronic invention that made high-quality audio tape recording possible was the development of bias - a high-frequency signal, typically in the range of 50 to 150 kHz, which is added to the signal to be recorded before being applied to the recording head, such that the magnetization is performed at levels in the most nearly linear portion of the medium's transfer function.

A tape allows multiple tracks in parallel to each other. Because they are carried on the same medium, they stay in perfect synchronization. This allowed for stereo sound (2 tracks), and quadrophonic sound (4 tracks). In a professional setting today, such as a studio, audio engineers may use 24 tracks or more for their recordings, one (or more) tracks for every instrument played.

Magnetic audio tape can be easily and inaudibly spliced. The combination of the ability to edit via splicing, and the ability to record multiple tracks, revolutionized studio recording. It became common studio recording practice to record on multiple tracks, and mix down afterwards. The convenience of tape editing and multitrack recording led to the rapid adoption of magnetic tape as the primary technology for commercial musical recordings. Although 33-1/3 rpm and 45 rpm vinyl records were the dominant consumer format, recordings were customarily made first on tape, then transferred to disk.

Analog magnetic tape recording introduces noise, usually called "hiss", caused by the finite size of the magnetic particles in the tape. There is a direct tradeoff between noise and economics. Signal-to-noise ratio is reduced at higher speeds and with wider tracks, increased at lower speeds and with narrower tracks.

By the late 1960s, disk reproducing equipment became so good that audiophiles soon became aware that some of the noise audible on recordings was not surface noise or deficiencies in their equipment, but reproduced tape hiss. A few companies starting making "direct to disk" specialty recordings, made by feeding microphone signals directly to a disk cutter (after amplification and mixing). These recordings never became popular, but they dramatically demonstrated the magnitude and importance of the tape hiss problem.

Prior to 1963, when Philips introduced the Compact audio cassette, almost all tape recording had used the reel-to-reel (also called "open reel") format. Previous attempts to package the tape in a convenient cartridge that required no threading met with limited success; the most successful was 8-Track cartridge used primarily in automobiles for playback only. The Philips Compact audio cassette added much needed convenience to the tape recording format and quickly came to dominate the consumer market, although it was lower in quality than open reel formats.

In the 1970s, advances in solid-state electronics made the design and marketing of more sophisticated analog circuitry economically feasible. This led to a number of attempts to reduce tape hiss through the use of various forms of volume compression and expansion, the most notable and commercially successful being several systems developed by Dolby Laboratories. These systems divided the frequency spectrum into multiple bands and applied volume compression/expansion independently to each band. The Dolby systems were very successful at increasing the effective dynamic range and signal-to-noise ratio of analog audio recording; to all intents and purposes, audible tape hiss could be eliminated. The original Dolby A was only used in professional recording. Successors found use in both professional and consumer formats; Dolby B became almost universal for the compact cassette, both prerecorded and for home use.

In the 1980s, digital recording methods were introduced, and analog tape recording was gradually displaced.

Recording on Film

To avoid synchronization problems, on sound films the sound track is recorded optically on to the side of the strip of motion picture film.

The first attempts to record sound to an optical medium occurred around 1900. In 1906 Lauste applied for a patent to record sound on film, but was ahead of his time. In 1923 de Forest applied for a patent to record to film. In 1927 the sound film The Jazz Singer was released; while not the first, it made a tremendous hit and made the public and the film industry realize that sound film was more than a mere novelty.

There are two methods for recording on film. Variable density recording uses changes in the darkness of the soundtrack side of the film to represent the soundwave. Variable width recording uses changes in the width of a dark strip to represent the soundwave.

In both cases light that is sent through the part of the film that corresponds to the soundtrack changes in intensity, proportional to the original sound, and that light is not projected on the screen but converted into an electrical signal by a light sensitive device.

Digital Recording

Early digital audio recorders use a device to make it possible to record digital audio on a U-matic video machine. This was followed by digital open reel multitrack recorders. With the improvement in digital storage technology, a variety of recording media is used to record digital audio today.

Digital Audio Tape (DAT) recorded the raw audio sampled at 48 kHz with a resolution of 16 bits. DAT is still used in studios. A failed digital tape recording system is the Digital Compact Cassette (DCC).

In the consumer market, tapes and gramophones were largely displaced by the compact disc (CD) and a lesser extent the minidisc. These recording media are fully digital and require complex electronics to play back.

Sound files can be stored on any computer storage medium.

As hard disk capacities and computer CPU speeds increased at the end of the 1990s, hard disk recording became more popular.


The earliest methods of recording sound involved the live recording of the performance directly to the recording medium. This was an entirely mechanical process, often called "Acoustical recording". The sound of the performers was captured by a diaphragm with the cutting needle connect to it. The needle made the grooves in the recording medium.

To make this process as efficient as possible the diaphragm was located at the apex of a cone and the performer(s) would crowd around the other end. If a performer was too loud then they would need to move back from the mouth of the cone to avoid drowning out the other performers. As a result of this, in early Jazz recordings a block of wood was used in place of the bass drum.

The advent of electrical recording made it possible to use microphones to capture the sound of the performance. The leading record labels switched to the electric microphone process in 1925, and most other record companies followed their lead by the end of the decade. Electrical recording increased the flexibity and sound quality. However, the recording still could not be edited, so if a mistake was made during the performance, the recording was useless.

Electrical recording made it possible to record one part to disc and then play that back while playing another part, recording both parts to a second disc. This is called over-dubbing. The first commercially issued records using over-dubbing were released by the Victor Talking Machine Company in the late 1920s. However overdubbing was of limited use until the advent of analogue audio tape. Use of tape overdubbing was pioneered by Les Paul and is called 'sound on sound' recording. In this way performances could be built up over time.

The analog tape recorder made it possible to erase or record over a previous recording so that mistakes could be fixed. Another advantage of recording on tape is the ability splice it. This allows the recording to be edited. Pieces of the recording can be removed, or rearranged.

The advent of electronic instruments (especially keyboards and synthesisers), effects and other instruments has lead to the importance of MIDI (Musical Instrument Digital Interface) in recording. For example, using MIDI timecode, it is possible to have different equipment 'trigger' without direct human intervention at the time of recording.

In more recent times, computers (digital audio workstation) have found an increasing role in the recording studio, as their use eases the tasks of cutting and looping, as well as allowing for instantaneous changes, such as duplication of parts, the addition of affects and the rearranging of parts of the recording.


CD-R's vs. TAPES

Unlike pressed original CDs, burned CDs have a relatively short life span of between two to five years, depending on the quality of the CD. There are a few things you can do to extend the life of a burned CD, like keeping the disc in a cool, dark space, but not a whole lot more.

The problem is material degradation. Optical discs commonly used for burning, such as CD-R and CD-RW, have a recording surface consisting of a layer of dye that can be modified by heat to store data. The degradation process can result in the data "shifting" on the surface and thus becoming unreadable to the laser beam.

If you want to avoid having to burn new CDs every few years, use magnetic tapes to store all your pictures, videos and songs for a lifetime. Magnetic tapes can have a life span of 30 years to 100 years.

Burning an audio CD on your computer that will play on a "regular" CD player is the challenge of this article.


  • MP3's have to be converted to a format that is readable by regular CD players.

  • Converting MP3 to a "wav" file is mentioned by software peddlers as the way to do this -- BUT regular CD players DON'T READ "wav" files!

  • Regular audio CD players read "CDA" files: "A .cda file is a CD Audio Track. These are found on audio CDs that can be played in standalone CD players or CD-ROM drives."

  • Older CD players don't read CD-RW's, and sometimes can't read CD-R's.

  • Nero (& other recording software) converts WAV & MP3 files to CDA automatically when making an audio CD.

CD's: Most Durable Brands

High marks: Taiyo Yuden, and also Mitsui Gold.

Comment: Taiyo Yuden is generally considered to be the most reliable media. Mitsui Gold has the gold reflective layer, meaning it won't oxidize easily, giving it a possible advantage over Taiyo Yuden. But T-Y is much more common than Mitsui, so it is known with more certainty that T-Y is reliable.

• Mitsui gold is good, but for $1 a piece?! I use Taiyo Yuden, from Best Buy in Fujifilm 50pack CDRs. If it on sale it can get as low as $9.99.

• For Fuji, make sure it says MADE IN JAPAN on the labeling, otherwise you will end up spending the same amount of money on Prodisc CD-R.

• Taiyo Yudens are sold with a plain silver face, no brand markings at all. Why? Because many name brand products are actually Taiyo Yudens with the "manufacturer" logo added! (From epinions)

• TDKs - made by CMC Magnetics, Taiwan. Some messages: "The last thing you want to use CMC for is archiving." Uses "type 6" phthalocyanine dye, considered good. But BRAND is more relevant to quality than is the dye type.

• Maxell CD-Rs made by Ritek, Taiwan. Dye "Type 7" phthalocyanine. One test (click here) says they don't last as long as other brands.

• Memorex CD-RWs: "Infodisc", Taiwan. cdfreaks: lower quality than "Verbatim," which gets a lot of favorable comments.

• Sony CD-RW: Made by "Daxon" in Taiwan. They say "OK"; my experience: they quickly burn-out, & some are coasters right from the package (rj).

• Verbatim - DVD-R's, Manufacturer ID "MCC 03RG20" (Mitsubishi [Made in Taiwan]). These "could" be made by CMC or another co. as Mitsubishi outsources it's DVD/CD manufacturing, but uses the Mutsubishi ID. Mixed reviews.
CD Freaks thread       Google search

• Dye Types: Taiyo Yudens use Type 1 Cyanine AZO. CMC Magnetics use Type 6 Phthalocyanine. Some claim one is better than the other, but the BRAND is key. Link to cdfreaks thread on this.

The surest method for checking a CDR's manufacturer is to use software, such as "Nero CD-DVD Speed" to look at the CDR's "Disc Info." This information is used by CD recorders to determine the best method of recording according to the CD's dye-type. It will show the actual CD-R manufacturer, dye-type, and recording strategy. Fuji branded Taiyo Yuden CD-Rs are "Type 1 Cyanine AZO".

Taiyo Yuden CD-Rs can be identified by:

  1. A "Made in Japan" label

  2. The central hub is frosty-translucent rather than clear.

  3. The recording surface color is bluish-emerald rather than silver.



"HQ"/ "High Quality" Taiyo Yuden are bogus: "HQ" is the company. Sold thru "Meritline" (AVOID!).
Message thread on this - Has a USPS Ship Option (for PO Box) - but it is ~$20 more than UPS - forget it.

Sample shipping calculation (PA) (white injet: $35/100 & $8.22 S+H)- "Highest quality products; Largest seller..."
•TY DVD Page
• - FAQ Page - elaborate (CA) - Taiyo Yuden - Specifies "Made in Japan"; slightly higher price; Plain silver: $30/100
•Inkjet Printable from above - $36/100; ($12.53 S+H!)(They don't have "Water Shields") (CA) - Taiyo Yuden page; Descriptions. Plain silver: $25/100; White Inkjet: $33/100; ($9.19 S+H!) (CA) - Taiyo Yuden page - doesn't specify "Japan"; Lower price: $23/100 silver; $29/100 Inkjet; ($7.06 S+H!) "Water Shields" (More durable) $30/50;

TAIYO YUDEN LISTED THE FOLLOWING SELLERS AS "AUTHORIZED": - ask for quote; can't buy online - $45/100 white inkjet + Postage. WARNING! They list GENERIC CD's on the same page with TAIYO YUDENS. Don't order the wrong ones! - Taiyo Yuden listed them, but site mentions NO BRAND NAME

Google results: Taiyo Yuden sellers

Google: Mitsui Gold CD-Rs

Epinions, Taiyo Yuden

About Taiyo Yuden - UK Seller

Taiyo Yuden Company's Page
•Taiyo Yuden: USA regional sales offices

cdfreaks - Taiyo Yuden FAQ Page

- instead of Taiyo Yuden

The "White" TY's have shown audio distortion; they may be counterfeit, or defective TY's. Either way, CMC's have not done this. Now searching for durable top layer on a "standard" CD-R.


Best Brands & Dealers (DVDs - But applicable to CD-Rs) -

cdfreaks - CD-R & DVD±R forum - CD-R Forum

• - Real/Fake Taiyo Yudens thread

Lengthy: Article, questions, etc, on T-Y -

• Taiyo Yuden DVD's Article: About JVC's, "8x" is better, & other info - avsforum

• Taiyo Yuden "JVC" DVD's are a Problem (thread) - Scroll down a bit; avsforum


DVD Video Track Info

DVD Video uses either MPEG-2 compression at up to 9.8 Mbit/s (9,800 kbit/s) or MPEG-1 compression at up to 1.856 Mbit/s (1,856 kbit/s). For MPEG-2 video:

At 29.97 frames per second, interlaced (NTSC-compatible):

  • 720 × 480 pixels (same resolution as D-1)
  • 704 × 480 pixels
  • 352 × 480 pixels (same as the China Video Disc standard)
  • 352 x 240 pixels

MPEG-2 formats support both interlaced and progressive-scan content. Content with frame rate different from one of the rates shown above can be encoded by using pulldown, which operates either directly, or with flags that identify scanning type, field order and field repeating pattern. A DVD player uses these flags to convert progressive content into interlaced video suitable for interlaced TV sets. These flags also help reproducing progressive content on progressive-scan television sets.

DVD Audio Track Info

A DVD audio track has a sampling rate of 48 kHz. Audio content of 44.1 kHz is converted to 48 kHz when rendered into a DVD.

The audio data on a DVD can be PCM, DTS, MPEG-1 Audio Layer II (MP2), or Dolby Digital (AC-3) format. The vast majority of commercial DVD-Video releases today employ AC-3 audio. The official allowed formats for the audio tracks on a DVD Video are:

  • PCM: 48 kHz or 96 kHz sampling rate, 16 bit or 24 bit Linear PCM, 2 to 6 channels, up to 6,144 kbit/s. N.B. 16-bit 48 kHz 8 channel PCM is allowed by the DVD-Video specification but is not well-supported by authoring applications or players.
  • AC-3: 48 kHz sampling rate, 1 to 5.1 (6) channels, up to 448 kbit/s
  • DTS: 48 kHz or 96 kHz sampling rate, 2 to 6.1 channels, Half Rate (768 kbit/s) or Full Rate (1,536 kbit/s)
  • MP2: 48 kHz sampling rate, 1 to 7.1 channels, up to 912 kbit/s

DVDs can contain more than one channel of audio, with a maximum of 8 audio tracks. This is most commonly used for commentary and different languages.

NOTE: the "AUDIO_TS" folder of a standard "Video DVD" is always empty, as the audio information is contained within the VIDEO_TS folder. The "AUDIO_TS" folder is for "Audio-DVD," an entirely different animal from the standard Video DVD.

Blank DVD Discs



• HQ (high quality, up to 9.8Mbps): 1h1m to 1h51m
• HSP (high standard play, up to 6.8Mbps): 1h30m to 2h41m
• SP (standard play, up to 5Mbps): 2h to 3h35m
• LP(long play, up to 3.19Mbps ): 3h40m to 6h35m

*The "speeds" have nothing to do with playback speed, but to the bitrate (data per sec of video / audio). Fast motion requires a higher bitrate than a slow picture. This differs from the fixed speeds SP and LP have on VHS tape.

For example: SP is ~2 hours on a DVD. Actually it's 720x480 video with a bitrate of around 5.0-5.5Mb/s, interlaced MPEG-2 with AC3 audio.

•HQ, time: 1:00, 720x480 resolution (Full D1), 9.72 MB/sec bitrate
•SP, time: 2:00, 720x480 (Full D1), 5.07 MB/sec
•SP+, time: 2:30, 720x480 (Full D1), 4.06 MB/sec
•LP, time: 3:00, 360x480 (HalfD1), 3.38 MB/sec
•EP, time: 4:00, 360x480 (HalfD1), 2.54 MB/sec
•EP+, time: 6:00, 360x480 (HalfD1), 1.80 MB/sec

DVD±RW Burners for Computers


DVD+R's are less stable than DVD-R's, going by the reviews of people who have bought the media. More coasters from DVD+R's across all brand lines. The techno's like "+R's" because of the method of encoding (or something), but in actual practice they're crap!

Other Points:

GOOGLE CACHE cdfreaks article & comments
original page: cdfreaks article & comments

  • DVD-R's make for a better choice when making Movie DVD's from your computer to be played on DVD Players. DVD-R's are the older formant & thus compatible with more players.

  • DVD-R has additional advantages over DVD+R: 1) compatibility with older players, and 2) better "copyright protection."

  • DVD-R format uses a slow wobble (140,6kHz) for tracking and speed, and the addressing info is carried by the land pre-pits (pre-recorded pits between grooves). On the groove signal, pre-pits give amplitude spikes.

  • DVD±R's are better protected than CD-R's. You can scratch the top of a DVD and it won't make any difference - the top layer has a plastic coating.

  • DVD±Rs are made from the same machines and material as CD-Rs, and therefore are not more durable or fail-safe than CD-Rs.

  • DVD+R(W) format uses a faster wobble (817,4kHz), and the addressing info is carried by a phase modulation of this wobble called ADIP. "Technically" phase modulation has better noise immunity than the pre-pits method. [And STILL DVD-R's are more reliable]

  • DVD-R's pre-pits method requires higher precision to cut both the grooves and the pre-pits between them. Pre-pits are more error prone than phase modulation, and the data they carry is also less protected. The DVD+R structure is 4 times smaller: one ADIP word is 52 bits large, while DVD-R uses 208 bits. This results in faster writing when the software is seeking this info. [And STILL DVD-R's are more reliable]


DVD-RAM is the most reliable DVD format for storing your data. The format more closely resembles that of Hard Drives or Floppy Disks.

SAMPLE PRICE: 3-Pack Panasonic 3X DVD-RAM, 4.7GB: $12.99 at Best Buy. (2/07)

Advantages of DVD-RAM:

  • Long life — without physical damage, data is retained for 30 years minimum.

  • Can be rewritten over 100,000 times (For comparison, DVD±RW can be rewritten about 1,000 times).

  • Reliable writing of discs. Verification done in hardware by the drive, so post-write verification by software is unnecessary.

  • Easier to use than other DVD technology.

  • Very fast access of smaller files on the disc.


  • In video recorders, DVD-RAM can be written to and watched (even separate programs) at the same time, much like TiVo.

Disadvantages of DVD-RAM:

  • Less compatibility than DVD+RW and DVD-RW.

  • DVD-RAM media is more expensive than other DVD types. (SAMPLE PRICE: 3-Pack 3X Panasonic DVD-RAM: $12.99 at Best Buy. (2/07)

  • DVD-RAM writing is slower than DVD+RW and DVD-RW.

Comparing DVD+RW with DVD-RW:


DVD unitDVD-R(G) unitDVD-R(A) unitDVD-RW unitDVD-RAM unitDVD+RW unit
DVD-ROM discreadsreadsreadsreadsreadsreads
DVD-R(G) discoften readsreads, writesreadsreads, writesreadsreads
DVD-R(A) discusually readsreadsreads, writesreadsreadsreads
DVD-RW discoften readsreadsreadsreads, writesusually readsusually reads
DVD-RAM discrarely readsdoesn't readdoesn't readdoesn't readreads, writesdoesn't read
DVD+RW discusually readsusually readsusually readsusually readsusually readsreads, writes
DVD+R discoften readsusually readsusually readsusually readsreadsreads, may write

Millenniata "Permanent" DVD's

The Millenniata "M-Disc" claims to be a virtually-permanent DVD type. Instead of using a dye, the chemical is described as being mineral-like. However, despite being so "durable," you are not supposed to use even a CD-marker to write on the disc. There are still some question marks surrounding this medium.

OVER $3.00 PER DISC!!! That puts it in the range of a DVD-ROM which is "Permanent" and rewritable (it is a magnetic media [e.g., recording tape]). Essentially too pricy for the capacity involved, imo.
FAQ's for Millenniata
Millenniata "Store" page, has info on when "LG/Hitachi" M-Ready burners will be put on sale.
Message thread on the LG "M-Ready" burners -

Blu-Ray DVD's

Blu-Ray Recordable Discs

Amazon List: Recordable Blu Ray Discs
Google: "blu-ray" "Millenniata" - search for sellers of Millenniata Blu Ray Discs

  • Blu-Ray Recordable (BD-R) Disc capacities are:
    • 25 GB for single-layer
    • 50 GB for double-layer
    • 100 GB for triple-layer
    • 128 GB for quadruple-layer

mp3 Flash Players


Flash Players -(Official term) - These are solid state "stick" devices that hold digital audio files on internal or external media, such as memory cards. These are low-storage devices, ranging from 128MB to 8GB, such as the 2nd generation iPod nano, the SanDisk Sansa series of players, and the iriver clix. Such players are commonly integrated into USB keydrives.

mp3's can also be stored onto CDs, as "data" files (as opposed to regular CD audio). Players for CD mp3's seem to be becoming rarer, and the features are often lacking. Good features would include:

  • LCD display showing title, track number, length of song/file

  • Ability to Fast Forward and Rewind through the individual tracks

  • Audio quality equal to that of a PC audio player such as Windows Media Player or Real Player


Article on DVD Burners - eBay

ARTICLE ON DVD+R vs DVD-R - cdfreaks

BETTER ARTICLE ON DVD+R vs DVD-R - murlinelectronics

"AnyDVD" Encryption Remover Software (for PC DVD burners)
• cdfreaks thread on AnyDVD
• Messageboard thread on DVD de-encrypters -
• Stablizer for copying on standalone DVDs. (Video Magic/ULTRA - Unclear as to its quality; just for reference)

• (Google) Facet Video Clarifier receives the most praise for removing the copy protection, but currrently unavailable & their site is down